

Application of the LM-BP neural network approach for 1 landslide risk assessments 2

- Junnan Xiong^{1,3,*}, Ming Sun², Hao Zhang¹, Weiming Cheng³, Yinghui Yang¹, 3 Mingyuan Sun¹, Yifan Cao¹ and Jiyan Wang¹ 4
- 5 ¹School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu, 610500,
- P.R. China
- 6 7 ²Geodetic Third Team, National Administration of Surveying, Mapping and Geo-information of China, 8 Chengdu, 610100, P.R. China
- 9 ³State Key Laboratory of Resources and Environmental Information System, Institute of Geographic
- 10 Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
- 11 Correspondence to: Junnan Xiong (neu_xjn@163.com)
- Running Title: Landslide risk zonation in pipeline areas 12
- 13

CC () BY

14 Abstract. Landslide disaster is one of the main risks involved with the operation of long-distance oil and 15 gas pipelines. Because previously established disaster risk models are too subjective, this paper presents 16 a quantitative model for regional risk assessment through an analysis of the laws of historical landslide 17 disasters along oil and gas pipelines. Using the Guangyuan section of the Lanzhou-Chengdu-Chongqing 18 (LCC) Long-Distance Products Oil Pipeline (82km) in China as a case study, we successively carried out 19 two independent assessments: a hazard assessment and a vulnerability assessment. We used an entropy 20 weight method to establish a system for the vulnerability assessment, whereas a Levenberg Marquardt-21 Back Propagation (LM-BP) neural network model was used to conduct the hazard assessment. The risk 22 assessment was carried out on the basis of two assessments. The first, the system of the vulnerability 23 assessment, considered the pipeline position and the angle between the pipe and the landslide (pipeline 24 laying environmental factors). We also used an interpolation theory to generate the standard sample 25 matrix of the LM-BP neural network. Accordingly, a landslide hazard risk zoning map was obtained 26 based on hazard and vulnerability assessment. The results showed that about 70% of the slopes were in 27 high-hazard areas with a comparatively high landslide possibility and that the southern section of the oil 28 pipeline in the study area was in danger. These results can be used as a guide for preventing and reducing 29 regional hazards, establishing safe routes for both existing and new pipelines and safely operating 30 pipelines in the Guangyuan section and other segments of the LCC oil pipeline.

31 **Keywords:** pipeline, landslide, risk, vulnerability, hazard, neural network

32

33 1. Introduction

34 By the year 2020, the total mileage of long-distance oil and gas pipelines is expected to exceed 160,000 35 km in China. This represents a major upsurge in the mileage of multinational long-distance oil and gas 36 pipelines (Huo, Wang, Cao, Wang, & Bureau, 2016). The rapid development of pipelines is associated 37 with significant geological hazards, especially landslides, which increasingly threaten the safe operation 38 of pipelines (Wang et al., 2012; Yun & Kang, 2014; Zheng, Zhang, Liu, & Wu, 2012). Landslide disasters 39 cause great harm to infrastructure and human life. Moreover, the wide impact area of landslides restricts 40 the economic development of landslide-prone areas (Ding, Heiser, Hübl, & Fuchs, 2016; Hong, Pradhan, 41 Xu, & Bui, 2015). A devastating landslide can lead to casualties, property losses, environmental damage 42 and long-term service disruptions caused by massive oil and gas leakages (G. Li, Zhang, Li, Ke, & Wu, 43 2016; Zheng et al., 2012). Generally, pipeline failure or destruction caused by landslides is much more 44 deleterious than the landslides themselves, which makes it important to research the risk assessment of 45 geological landslide hazards in pipeline areas (Inaudi & Glisic, 2006; Mansour, Morgenstern, & Martin, 46 2011).

47 Natural disaster risk comprises a combination of natural and social attributes (Atta-Ur-Rahman & 48 Shaw, 2015). The United Nations Department of Humanitarian Affairs expresses natural disaster risk as 49 a product of hazards and vulnerabilities (Rafiq & Blaschke, 2012; Sari, Innaqa, & Safrilah, 2017). In 50 recent years, progress in geographic information systems (GIS) and remote sensing (RS) technologies 51 have greatly enhanced our ability to evaluate the potential risks that landslides pose to pipelines (Akgun,

CC () BY

Page 3

52 Kıncal, & Pradhan, 2012; B. Li & Gao, 2015; Sari et al., 2017). The disaster risk assessment model has 53 been widely recognized and applied by experts and scholars all over the world. Landslide risk assessment 54 can take the form of a qualitative (Wu, Tang, & Einstein, 1996), quantitative (Ho, Leroi, & Roberds, 55 2000) or semi-quantitative assessment (Yingchun Liu, Shi, Lu, Xiao, & Wu, 2015) according to actual 56 demand. Quantitative methods and models that have been proposed for the assessment can be divided 57 into methods of statistical analysis (Sari et al., 2017), mathematical models (Akgun et al., 2012) and 58 machine learning (He & Fu, 2009). However, most of these methods are subjective, which could affect 59 the accuracy and reasonableness of the evaluation (Fall, Azzam, & Noubactep, 2006; Sarkar & Gupta, 60 2005). This shortcoming can be overcome through the artificial neural network, especially the mature Back Propagation (BP) Neural Network that is widely used in function approximation and pattern 61 62 recognition (Ke & Li, 2014; P. L. Li, Tian, & Li, 2013; Su & Deng, 2003). The evaluation index system 63 generally includes disaster characteristics, disaster prevention and pipeline attributes (J. Li, 2010; 64 Shuiping Li, 2008). The fault tree analysis, fuzzy comprehensive evaluation and the grey theory are used 65 to evaluate the failure probability of the system through index weight and scoring (Shi, 2011; Ye, Jiang, 66 Yao, Xia, & Zhao, 2013). In previous studies, pipeline vulnerability evaluation indexes only considered 67 the pipeline itself, and the relationship between the pipeline and environment was rarely examined (Feng, 68 Zhang, & Zhang, 2014; Shuiping Li, 2008; Yingchun Liu et al., 2015). In this paper, the interaction 69 between landslide hazards and the pipeline itself was considered, which improved the quantitative degree 70 of the evaluation. 71 Based on the theory of the LM-BP neural network, a standard sample matrix was developed using the

interpolation theory after an analysis of the distribution characteristics of landslides that occurred in the study area was performed and a regional landslide hazards assessment was completed. Considering the interaction between landslide disasters and the pipeline itself, the pipeline vulnerability evaluation in the landslide area was realized using the entropy weight method. This paper established a risk assessment model and methods for assessing landslide geological hazards of oil pipelines by comprehensively utilizing GIS and RS technology, which together improved the quantitative degree of the assessment.

78 2. Study Area

79 The study area was Guangyuan City in the Sichuan province, which was further restricted to the area 80 from 105 °15 'to 106 °04 E and 32 °03 to 32 °45 N, straddling 19 townships in five counties from south to north (Figure 1). The Lanzhou-Chengdu-Chongqing (LCC) Products Oil Pipeline is China's first long-81 82 distance pipeline. It begins in Lanzhou City and runs through the Shanxi and Sichuan provinces (Hao & 83 Liu, 2008). Our study area covered sloped areas of the range with 5 km on both sides of the Guangyuan 84 section (82 km) of the oil pipeline. The pipeline within the K558-K642 mileages may be affected by the 85 slope areas. The Guangyuan section, located in northern Sichuan, is a transitional zone from the basin to the mountain. It features a terrain of moderate and low mountains, crisscrossed networks of ravines and 86 87 a strong fluvial incision. Altitudes in this area range from 328 m to 1505 m. The study area has a 88 subtropical monsoon climate with four distinctive seasons and annual precipitation measuring about 900 89 mm to 1,000 mm. Moreover, two large unstable faults (the Central Fault of Longmen Mountain and 90 Longmen Mountain's Piedmont Fault Zone) make the area geologically unstable and prone to frequent

CC () BY

Page 4

- 91 geological hazards (Shiyuan Li et al., 2012). Guangyuan, through which the pipeline passes, has a high
- 92 incidence of landslides, some of which have happened 300 times in the Lizhou and Chaotian districts
- 93 (Zhang, Shi, Gan, & Liu, 2011). In this area, landslide geological hazards seriously threaten the safe
- 94 operation of the LCC oil pipeline.

95 3. Data Sources

96 Landslide hazard assessment, pipeline vulnerability assessment and geological hazard risk assessment of 97 the landslide pipeline were made successively. Digital elevation model (DEM) data with 30 m accuracy 98 was sourced from the Geospatial Data Cloud (http://www.gscloud.cn/). Precipitation data was 99 downloaded from the dataset of annual surface observation values in China between the years 1981 to 100 2010, as published by the China Meteorological Administration (http://data.cma.cn/). This data was 101 collected from 18 meteorological observatories near and within the study area and interpolated using the 102 kriging method (at a resolution of 30 m × 30 m). Geological maps and landslide data (historical landslides) 103 in the study area were obtained from the Sichuan province's geological environmental monitoring station. 104 RS images (GF-1, multispectral 8 m, resolution 2 m) were provided by the Sichuan Remote Sensing 105 Center.

The location of the middle line of the pipeline was detected through the direct connection method (i.e., the transmitter's output line was directly connected to the metal pipeline) using an RD8000 underground pipeline detector. Pipeline midline coordinates were measured using total network Real Time Kinematic technology, and simultaneously, the coordinates of the pipe ancillary facilities (including test piles, mileage piles and milestones) were acquired. Mileage data obtained through inner pipeline detection was derived from the China Petroleum Pipeline Company.

112 4. Methods

113 4.1 Assessment unit

114 Division precision and the scale of the slope unit (i.e., the basic element for a regional landslide hazard

- 115 assessment) were in keeping with the results of the evaluation (Qiu, Niu, ZhaoYannan, & Wu, 2015). A
- 116 total of 315 slope units were divided using hydrologic analysis in ArcGIS (v. 10.4) (Fig. 2a). The
- 117 irrational unit was artificially identified and modified by comparing GF-1 satellite remote sensing
- 118 images. Boundary correction, fragment combination and fissure filling were used for modification.
- 119 The object of the pipeline vulnerability assessment in the landslide area was the pipeline. Considering
- 120 both previous research and the particulars of the research object, we used a comprehensive
- 121 segmentation method based on GIS to divide the pipelines in our study. A total of 180 pipes were
- divided in the study area, of which the longest was about 1.7 km, and the shortest was only about 10 m(Fig. 2b).

124 4.2 Assessment factors

125 Based on selection principles of the indicator system and the formation mechanism of landslide

- 126 geological hazards, as few indicators as possible were selected to reflect the degree of danger posed by
- 127 the landslide as accurately as possible (Avalon Cullen, Al-Suhili, & Khanbilvardi, 2016; Jaiswal, Westen,

Page 5

128 & Jetten, 2010; Ray, Dimri, Lakhera, & Sati, 2007). he internal factors in these indicators of the paper 129 included topography, geological structure, stratigraphic lithology and surface coverage. Similarly, the 130 external factors included mean annual precipitation (MAP) and the coefficient of the variation of annual 131 rainfall (CVAR). The correlations between indicators were analyzed using R (v. 3.3.1), and the results 132 showed a significant correlation between MAP and CVAR (R = 0.99) and between NDWI and NDVI (R 133 = 0.87). Based on correlation and standard deviation, CVAR and NDWI were eliminated from the 134 original evaluation system for landslide hazard assessment in the pipeline area (Table 1). 135 Generally, the evaluation index of pipeline vulnerability as it relates to the relationship between a pipeline 136 and its surrounding environment is rarely considered. The evaluation indicators in this paper were refined 137 to include pipeline parameters and the spatial relationship between a pipeline and landslide. The pipelines 138 in the study area were based in mountainous areas and had been running for many years. All of these 139 pipelines consisted of high-pressure pipes that were made of steel tubes and had a diameter of 610 mm 140 for conveying oil. In keeping with the theory of the entropy weight method, these indicators (e.g., 141 pressure, materials, diameter and media) were not included in the final evaluation system used to 142 determine pipeline vulnerability. 143 4.3 LM-BP neural network Model

The LM algorithm, also known as the damped least square method, has the advantage of local fast convergence. Its strong global searching ability contributes to the strong extrapolation ability of the trained network. The BP neural network model, optimized by the LM algorithm, was used to evaluate the regional landslide hazard in this study. MATLAB 2014 with the *trainlm* training function was used to implement the LM-BP neural network.

149 Data from 106 landslide disasters was collected near the research area. Of these landslides, 23 were 150 within the region of the study area. Most of the landslides located outside the study area were less than 151 20 km away from the pipeline. Due to comparable environmental conditions, these landslides could still 152 help us identify the relationship between landslides and environment factors. In light of the frequency 153 distribution of each evaluation indicator (Fig. 3), the landslide hazard grade corresponding to each 154 interval of the indicators was divided, and then the hazard degree monotonicity in each interval was decided. For this study, the landslide hazard grade was divided into four levels: low (I), medium (II), 155 156 high (III) and extremely high (IV).

On the basis of the classification criteria of the evaluation indicators used to predict landslide hazard degree and the functional relationship between the evaluation indicators and landslide probabilities, standard samples (training samples and test samples) were built using a certain mathematical method. The training samples and test samples were evaluated using similar construction methods but with different sample sizes. Finally, the indicator data was normalized, it was entered into the LM-BP neural network for simulation and 315 slope unit landslide hazard values were output.

163 4.4 Vulnerability assessment model for pipelines

164 The vulnerability evaluation model of pipelines in the landslide area was established using the entropy

165 weight method, which overcame the shortcomings of the traditional weight method that does not consider

166 the different evaluation indexes and the excessive human influence on the process of evaluation (Gao,

Page 6

167 Li, Wang, Li, & Lin, 2017; Pal, 2014). Pipeline defect density was obtained from the pipeline internal 168 inspection data, which consisted of both mileage data that needed to be converted into three-dimensional 169 coordinate data and pipeline center line coordinate data obtained through C# programming. In addition, 170 the main slide direction of the landslide was replaced by the slope direction that was extracted by DEM. 171 The coordinate azimuth of the pipe section was extracted using the linear vector data of each pipe section, 172 and the angle between the pipeline and the slope was calculated using the mathematical method. The 173 calculation process was solved in the VB language on ArcGIS using second development functions. 174 Finally, the entropy weight of 5 indexes was calculated by programming in MATLAB 2014. The entropy 175 weight calculation results for pipeline landslide vulnerability assessment are shown in Table 2. Pipeline 176 vulnerability in landslide area was calculated using the following formula:

177
$$H_j = \sum_{i=1}^m w_i r_{ij}$$
 (1)

where H_j is the evaluation value of the pipeline section's vulnerability; w_i is the weight of the evaluation index; and r_{ij} represents the *i*th evaluation index values of *j*th pipe sections.

180

181 5 Results and comparison

182 5.1 Regional landslide hazard assessment

183 The LM-BP neural network was trained and the network was stopped after 182 iterations. An RMSE 184 value of 9.93e-09 indicated that the goal of precision had been reached. Through the simulation of the 185 network test, none of the absolute error values of test data (20 groups) were found to be greater than 0.02; 186 this result aligned with our expectation of the precision of the landslide hazard assessment. The landslide 187 hazard grade was divided into four levels by using the equal interval method at intervals of 0.25. The 188 safe section (low hazard) was located in the central part of the study area. The dangerous (high hazard) 189 section was located north and south (Fig. 4). In the study area, most of the exposed rock was dominated 190 by shale, which belonged to the easy-slip rock group.

191 Average altitude ranged from 450 m to 1400 m, and the relative height difference was greater than 80 192 m, with the slope between 15° and 35° . Based on an overlay analysis of historic landslides within the 193 study area, and hazard zonation maps, we surmised that the probability of landslides in the study area 194 was extremely high, and that 87% of the landslides occurred in the medium-, high-, and extremely high-195 hazard areas. Among these landslides, three were located in low-hazard areas, which accounted for 13% 196 of the landslide disaster sites, five occurred in medium-hazard areas (accounting for 21.7% of disaster 197 sites), seven occurred in high-hazard areas (accounting for 30.4% of sites) and eight occurred in 198 extremely high-hazard areas (accounting for 34.8% of sites). The evaluation results were found to 199 accurately reflect the trends and rules of distribution of landslides in the study area. The number and area of slopes in high-hazard and extremely high-hazard areas accounted for about 70% of the total (Table 3). 200 201 The probability of landslide occurrence in the study area was generally high, which was consistent with 202 the fact that the region was landslide-prone.

203 5.2 Vulnerability assessment for oil pipeline in landslide area

Page 7

The equal interval of 0.25 was used to divide the pipeline vulnerability level into four grades to obtain the pipeline vulnerability zonation of the study area (Fig. 5). The pipeline in the northern part of the study area was given a low vulnerability grade, while the situation in the south of the region is more serious. The number, length and percentage of pipeline segments with different grade vulnerabilities are shown in Table 4. The number and length of pipeline segments in highly vulnerable areas (III) and extremely vulnerable areas (IV) accounted for about 12% of the total.

According to natural disaster risk expressions released by the UN, the definition of risk may be expressed as the product of landslide hazard in a pipeline area and pipeline vulnerabilities in the landslide area. The risk degrees were distinguished using the equal interval method, and four grades were generated. Where the comprehensive risk assessment value was within 0 to 0.0625, the corresponding risk grade was Grade I; the corresponding risk grades with the values of 0.0625 to 0.25, 0.25 to 0.5625 and 0.5625 to 1.0 were Grade II, III and IV, respectively. The risk grade of each section of the pipeline within the research area is shown in Fig. 6.

The number of sections with a high-risk grade was 33, which accounted for 18.33% of all pipeline sections and represented 16.57% of the total pipeline length of 13.461 km). There were 4 sections with extremely high-risk grade, which accounted for 2.22% of all sections and represented 3.31% of the total pipeline length of 2.538 km. The section number and length of pipelines lying in high-risk (III) and extremely high-risk (IV) areas accounted for 20% of the total pipeline length, and the risk grade of pipelines inside Qingchuan and Jian'ge County was relatively high.

224 5.4 Analysis of risk assessment results

225 Large or huge landslides were common in areas that we categorized as extremely high risk, which we 226 defined as those that were geologically evolving or had experienced obvious deformations within the last 227 2 years with still visible cracks. These pipelines were subject to dangers at any time, as the pipelines 228 within the areas prone to landslides were found to contain many defects or extensive damage. These 229 areas also posed considerable threats; for example, pipeline ruptures or breaks could lead to leakages or 230 serious deformations that cause transportation failure. Because these are unacceptable events, risk 231 prevention and control measures must be taken in a short time. Pipelines with extremely high risk were 232 mainly distributed in the following areas: (1) Xiasi Village in Xiasi County (Pile No. K628-K630); (2) 233 Shiweng Village-Maliu Village of Xiasi County (Pile No. K635-K637). This section lay in the south of 234 the research area, with an altitude of 500 m to 750 m. Here, the slope conditions affected the distribution 235 of groundwater pore pressure and the physical and mechanical characteristics of the rock and soil in three 236 areas: vegetation cover, evaporation and slope erosion. Ultimately, these three factors affected slope 237 stability (Luo & Tan, 2011). Vertical and horizontal ravines have also been seen in this section, with 238 a relative height difference greater than 100 m and slop between 15° to 35°. Slope degrees with 239 obvious changes had a great influence on slope stability (Chang & Kim, 2004; Hu, Xu, Wang, Asch, & 240 Hicher, 2015). The exposed rocks in this area were mainly shale and belonged to the sliding-prone 241 rock group. Rock type and interlayer structure were found to be important internal indicators that a 242 landslide could occur (Guzzetti, Cardinali, & Reichenbach, 1996; Xiang et al., 2010; Xin, Chong, &

Page 8

243 Dai, 2009). The distance between the fault and the pipeline in the section was about 2 km with a 244 NDVI of about 0.75 and MAP of about 970 mm. Faulted zones and nearby rock and earth masses that were destroyed in a geologic event reduced the integrity of a slope, and the faults and important 245 246 groundwater channels could also cause deformation and damage of a slope (Yinghui Liu, 2009). The 247 pipelines in these areas exhibited many defects. Most pipelines passed through the slope in an inclined 248 or horizontal way, an attribute that typically increased the risk of a landslide occurring. 249 In high-risk areas, small or moderate landslides commonly occurred in areas that we categorized as 250 high risk. They were in deformation, or had obvious deformation recently (within 2 years), such as 251 obvious cracks, subsidence or tympanites on the landslide and even shear. The pipelines in these areas 252 had defects and were buried at a shallow depth. If a landslide occurred in this pipeline area, it could cause 253 pipe suspension, floating and damage. It could also contribute to a small to moderate leakage of the 254 medium. However, damaged pipes can be welded or repaired. Monitoring is critical in high-risk areas. 255 In our study, the pipeline high-risk area was defined by the following areas: (1) Xiasi Town Xiasi Village-256 Shiweng Village (pipe No. K622-K633). (2) Xiasi Town Maliu Village Jinzishan Xiangdasang Village 257 (pipe No. K635-K642). This area was located in the south of the pipe, which was buried in the study area. 258 The altitude of the study area was between 450 m and 800 m, the relative elevation difference was over 259 100m and the slope was between 15 ° and 40 °. Most of the outcrops in this area were quartz sandstone, 260 which belonged to the easy-sliding rock group. The pipes in this area were about 2.5 km away from faults. The NDVI was about 0.6 to 0.8, and MAP was about 970 nm. Pipes showed many defects, most of them 261 262 either crossing the slope or lying in the center of slope. All of the above factors provided sufficient 263 conditions for the formation of landslide. 264 In the medium-risk areas, only small landslides were found to occur, and we observed no sign of 265 deformation. But through the analysis of geological structure, topography and landform, we found the 266 area to demonstrate a tendency for developing landslides. The pipes in this risk area exhibited almost no 267 faults and were buried deep beneath the ground. However, under bad conditions, the landslides in these 268 areas could also affect the pipes' safety, causing the pipes to become exposed or deformed. These areas 269 need simple monitoring. For our study, medium-risk areas were defined as follows: (1) Sanlong village 270 of Dongxihe township-Panlong town Dongsheng village (pipe No. K559-K593). (2) Panlong town 271 Qinlao village-Wu'ai village (pipe No. K595-K597). (3) Baolun town Laolin'gou village-Xiasi town 272 Youyu village (pipe No. K599-K630). 273 In the low-risk areas, landslides didn't occur under ordinary conditions, but they could occur if a strong 274 earthquake hit or if the area experienced continuous or heavy rain. The pipes in low-risk areas showed 275 no defects and were buried very deep. They were also located far away from areas affected by landslides. 276 Therefore, landslides in these areas caused no obvious damage to the pipes, and few threatened the safety 277 of pipes. However, regular inspection is necessary to ensure that the pipes continue to operate safely. The 278 pipe low-risk area were defined as follows: (1) Panlong town Dongsheng village-Qinlao village (pipe 279 No. K591-K597). (2) Baolun town Xiaojia village-Baolun town Laolin'gou village (pipe No. K599-280 K608). 281 Through comprehensive analysis of each risk level area, we compiled a list of pipeline landslide risks

282 (Table 6). This list describes each landslide risk level in four respects: pipeline risk, landslide hazard,

Page 9

283 pipeline vulnerability and risk control measures.

284 5 Results and comparison

285 The faults inherent to traditional landslide risk assessment include excessive human influence, failure of

286 pipeline vulnerability assessments to consider the interaction between landslide disaster and pipeline 287 ontology and the low quantification degree of risk assessment results.

288 Taking the Guangyuan section (82 km) of the LCC oil and gas pipeline as an example, we used GIS 289 and RS technology to establish a regional landslide hazard assessment model based on the LM-BP neural 290 network. We determined that there were 112 and 108 slopes in high-hazard and extremely high-hazard 291 areas that accounted for 33.18% and 40.46% of the total area of the study area, respectively. Then, we 292 established the model of pipeline vulnerability evaluation based on the entropy weight method by 293 combining the pipeline body and the environmental information. The number and length of pipe 294 segments in the highly vulnerable (III) and extremely vulnerable area (IV) accounted for about 12% of 295 the total. Finally, based on the hazard assessment and the vulnerability assessment, we completed the 296 risk assessment and risk division of the oil pipeline, thus forming a geological disaster risk assessment 297 model and a method for oil pipeline and landslide risk assessment. The risk assessment results 298 demonstrated that the number and length of high-hazard and extremely high-hazard pipeline segments 299 represented 20% of the total. Similarly, the pipeline risk within Qingchuan and Jian'ge Counties was 300 relatively high. Our pipeline landslide risk assessment has laid a foundation for the future study of 301 pipeline safety management and pipeline failure consequence loss assessment.

302

303 Acknowledgments

The study has been funded by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20030302), IWHR(China Institute of Water Resources and Hydropower Research) National Mountain Flood Disaster Investigation Project (SHZH-IWHR-57), Southwest Petroleum University Of Science And Technology Innovation Team Projects (2017CXTD09) and the Study on temporal and spatial differentiation of historical mountain flood disasters in Fujian province (NDMBD2018003).

CC I

Page 10

311 References

- 312 Akgun, A., Kıncal, C., and Pradhan, B.: Application of remote sensing data and GIS for landslide risk
- 313 assessment as an environmental threat to Izmir city (west Turkey). Environmental Monitoring &
- 314 Assessment, 184(9), 5453-5470. https://doi: 10.1007/s10661-011-2352-8 2012.
- Atta-Ur-Rahman, and Shaw, R. (2015). Hazard, Vulnerability and Risk: The Pakistan Context: Springer
- 316 Japan.
- 317 Avalon Cullen, C., Al-Suhili, R., and Khanbilvardi, R.: Guidance Index for Shallow Landslide Hazard
- 318 Analysis. Remote Sensing, 8(10), 866. https://doi: 10.3390/rs8100866, 2016.
- 319 Chang, H., and Kim, N. K.: The evaluation and the sensitivity analysis of GIS-based landslide
- 320 susceptibility models. Geosciences Journal, 8(4), 415-423. https://doi: 10.1007/BF02910477, 2004.
- 321 Ding, M., Heiser, M., Hübl, J., and Fuchs, S.: Regional vulnerability assessment for debris flows in
- 322 China—a CWS approach. Landslides, 13(3), 537-550. https://doi: 10.1007/s10346-015-0578-1 2016.
- 323 Fall, M., Azzam, R., and Noubactep, C.: A multi-method approach to study the stability of natural slopes
- and landslide susceptibility mapping. Engineering Geology, 82(4), 241-263. 2006.
- 325 Feng, W., Zhang, T., and Zhang, Y.: Evaluating the stability of landslides in xianshizhai village and the
- pipeline vulnerability with their action. Journal of Geological Hazards & Environment Preservation.2014.
- 328 Gao, C. L., Li, S. C., Wang, J., Li, L. P., and Lin, P.: The Risk Assessment of Tunnels Based on Grey
- 329 Correlation and Entropy Weight Method. Geotechnical & Geological Engineering(4), 1-11. https://doi:
- 330 10.1007/s10706-017-0415-5 2017.
- 331 Guzzetti, F., Cardinali, M., and Reichenbach, P.: The Influence of Structural Setting and Lithology on
- Landslide Type and Pattern. Environmental & Engineering Geoscience, 2(4), 531-555. 1996.
- Hao, J., and Liu, J.: Zonaion of Danger Degree of Geological Hazards over Lanzhou-Chengdu Chongqing Products Pipeline. Oil & Gas Storage & Transportation. 2008.
- He, Y., and Fu, W.: Application of fuzzy support vector machine to landslide risk assessment. Journal of
 Natural Disasters, 18(5), 107-112. 2009.
- Ho, K., Leroi, E., and Roberds, B.: Quantitative Risk Assessment : Application, Myths and FutureDirection. 2000.
- 339 Hong, H., Pradhan, B., Xu, C., and Bui, D. T.: Spatial prediction of landslide hazard at the Yihuang area
- 340 (China) using two-class kernel logistic regression, alternating decision tree and support vector machines.
- 341 Catena, 133, 266-281. https://doi: 10.1016/j.catena.2015.05.019 2015.
- 342 Hu, W., Xu, Q., Wang, G. H., Asch, T. W. J. V., and Hicher, P. Y.: Sensitivity of the initiation of debris
- 343 flow to initial soil moisture. Landslides, 12(6), 1139-1145. https://doi: 10.1007/s10346-014-0529-2 2015.
- Huo, F., Wang, W., Cao, Y., Wang, F., and Bureau, C. P.: China's Construction Technology of Oil and Gas
- 345 Storage and Transportation and Its Future Development Direction. Oil Forum. 2016.
- 346 Inaudi, D., and Glisic, B.: Reliability and field testing of distributed strain and temperature sensors.
- Proceedings of SPIE The International Society for Optical Engineering, 6167(14), 2586–2597.
 https://doi: 10.1117/12.661088 2006.
- 349 Jaiswal, P., Westen, C. J. V., and Jetten, V.: Quantitative landslide hazard assessment along a
- transportation corridor in southern India. Engineering Geology, 116(3), 236-250. https://doi:
 10.1016/j.enggeo.2010.09.005, 2010.
- 352 Ke, F., and Li, Y.: The forecasting method of landslides based on improved BP neural network.
- 353 Geotechnical Investigation & Surveying. 2014.
- 354 Li, B., and Gao, Y. (2015). Application of the improved fuzzy analytic hierarchy process for landslide

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-360 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 6 December 2018

© Author(s) 2018. CC BY 4.0 License.

- 355 hazard assessment based on RS and GIS. Paper presented at the International Conference on Intelligent
- 356 Earth Observing and Applications.
- Li, G., Zhang, P., Li, Z., Ke, Z., and Wu, G.: Safety length simulation of natural gas pipeline subjected
- to transverse landslide. 2016.
- 359 Li, J. (2010). Wenchuan Earthquake and Secondary Geological Hazard Assessment Based on RS/GIS
- 360 Technology. (Master), China University of Geosciences, Beijing, China.
- 361 Li, P. L., Tian, W. P., and Li, J. C.: Analysis of landslide stability based on BP neural network. Journal of
- 362 Guangxi University. 2013.
- 363 Li, S. (2008). The Risk Assessment Study on the Environmental Geological Hazards along the West-East
- 364 Nature Gas Pipeline. (Mater), SouthWest JiaoTong University, Chengdu, China.
- 365 Li, S., Jian, j., Wu, Z., Li, S., Li, H., Bai, K., Ke, Q., Xu, Y., and Hu, Y.: A Design of the Geo-
- Environmental Management Database System for Guangyuan City Journal of Geological Hazards and
 Environment Preservation, 23(3), 7. 2012.
- 368 Liu, Y. (2009). The characteristic and evaluation of collapse and landslide disaster along du-wen highway
- 369 in Wenchuan earthquake region. (Master), Lanzhou University, Lanzhou.
- 370 Liu, Y., Shi, Y., Lu, Q., Xiao, H., and Wu, S.: Risk Assessment of Geological Disasters in Single Pipe
- Based on Scoring Index Method: A Case Study of Soil Landslide. Natural Gas Technology & Economy.2015.
- 373 Luo, Z. F., and Tan, D. J.: Landslide Hazard Evaluation in Debris Flow Catchment Area Based on GIS
- and Information Method. China Safety Science Journal, 21(11), 144-150. https://doi:
 10.1631/jzus.B1000265 2011.
- Mansour, M. F., Morgenstern, N. R., and Martin, C. D.: Expected damage from displacement of slowmoving slides. Landslides, 8(1), 117-131. https://doi: 10.1007/s10346-010-0227-7 2011.
- Pal, R.: Entropy Production in Pipeline Flow of Dispersions of Water in Oil. Entropy, 16(8), 4648-4661.
 https://doi: 10.3390/e16084648 2014.
- Qiu, D., Niu, R., ZhaoYannan, and Wu, X.: Risk Zoning of Earthquake-Induced Landslides Based on
 Slope Units: A Case Study on Lushan Earthquake. Journal of Jilin University, 45(5), 1470-1478.
 https://doi: 10.13278/j.cnki.jjuese.201505201 2015.
- 383 Rafiq, L., and Blaschke, T.: Disaster risk and vulnerability in Pakistan at a district level. Geomatics
- 384 Natural Hazards & Risk, 3(4), 324-341. https://doi: 10.1080/19475705.2011.626083 2012.
- Ray, P. K. C., Dimri, S., Lakhera, R. C., and Sati, S.: Fuzzy-based method for landslide hazard assessment
- 386 in active seismic zone of Himalaya. Landslides, 4(2), 101. https://doi: 10.1007/s10346-006-0068-6 2007.
- Sari, D. A. P., Innaqa, S., and Safrilah. Hazard, Vulnerability and Capacity Mapping for Landslides Risk
 Analysis using Geographic Information System (GIS). 209(1), 012106. https://doi: 10.1088/1757-
- 389 899X/209/1/012106 2017.
- Sarkar, S., and Gupta, P. K.: Techniques for Landslide Hazard Zonation Application to Srinagar Rudraprayag Area of Gar. Journal of the Geological Society of India, 65(2), 217-230. 2005.
- 392 Shi, S.: Risk Analysis for Pipeline Construction about Third Party Damage Based on Triangular Fuzzy
- 393 Number and Fault Tree Theory. Journal of Chongqing University of Science & Technology. 2011.
- 394 Su, G., and Deng, F.: On the Improving Backpropagation Algorithms of the Neural Networks Based on
- 395 MATLAB Language: A Review. Bulletin of Science & Technology. 2003.
- 396 Wang, P., Xu, Z., Bai, M., Du, Y., Mu, S., Wang, D., and Yang, Y.: Landslide Risk Assessment Expert
- 397 System Along the Oil and Gas Pipeline Routes. Advanced Materials Research, 418-420, 1553-1559.
- 398 https://doi: 10.4028/www.scientific.net/AMR.418-420.1553 2012.

- 399 Wu, T. H., Tang, W. H., and Einstein, H. H. (1996). Landslides: investigation and mitigation. chapter 6 -
- 400 landslide hazard and risk assessment.
- 401 Xiang, L. Z., Cui, P., Zhang, J. Q., Huang, D. C., Fang, H., and Zhou, X. J.: Triggering factors
- 402 susceptibility of earthquake-induced collapses and landslides in Wenchuan County. Journal of Sichuan 403 University, 42(5), 105-112. 2010.
- 404 Xin, Y., Chong, X. U., and Dai, F. C.: Contribution of strata lithology and slope gradient to landslides 405 triggered by Wenchuan Ms 8 earthquake, Sichuan, China. Geological Bulletin of China, 28(8), 1156-1162. 406 2009.
- 407 Ye, C., Jiang, H., Yao, A., Xia, Q., and Zhao, X.: Study on risk controlling method of third party 408 construction damage on oil and gas pipeline. Journal of Safety Science & Technology, 9(8), 140-145. 409 2013.
- 410 Yun, L., and Kang, L.: Reliability Analysis of High Pressure Buried Pipeline under Landslide. Applied
- Mechanics & Materials, 501-504, 1081-1086. https://doi: 10.4028/www.scientific.net/AMM.501-411 412 504.1081 2014.
- 413 Zhang, Y., Shi, J., Gan, J., and Liu, C.: Analysis of Distribution Characteristics and Influencing Factors
- 414 of Secondary Geohazards in Guangyuan City-Taking Chaotian District as an Example. Journal of
- 415 Catastrophology, 26(1), 75-79. https://doi: 10.1007/s12182-011-0118-0 2011.
- 416 Zheng, J. Y., Zhang, B. J., Liu, P. F., and Wu, L. L.: Failure analysis and safety evaluation of buried
- 417 pipeline due to deflection of landslide process. Engineering Failure Analysis, 25(4), 156-168. https://doi:
- 418 10.1016/j.engfailanal.2012.05.011 2012.
- 419

Page 13

420 List of tables and figures

- 421 Table 1 Indicators of landslide hazard assessment and pipeline vulnerability assessment
- 422 **Table 2** Entropy weight of evaluation index
- 423 Table 3 Number and area of slopes of four hazard grade
- 424 **Table 4** Number and distances of pipeline of four vulnerability grade
- 425 **Table 5** Number and distances of pipeline of four risk grade
- 426 **Table 6** Description of pipeline risk level
- 427
- 428 Figure 1 Landslide location map of the study area
- 429 **Figure 2** All slope units (a) and pipeline section (b) in the study area
- 430 Figure 3 The frequency distribution of each factor in the landslide location. Maps (a), (b), (c), (d), (e),
- 431 (f), (g), and (h) represent the elevation, slope, aspect, height difference, TPC, NVI, MAP, and distance
- 432 from the fault, respectively
- 433 Figure 4 Landslide hazard map of study area
- 434 **Figure 5** Pipeline vulnerability map of study area
- 435 Figure 6 Pipeline risk map of study area
- 436

Page 14

	Table 1	1
	Factor	Indicators
		Elevation
		Slope
	Landform	Aspect
Lar		Height Difference
ıdsli		Topographic profile curvature (TPC)
de h	L and sour	NDVI
azar	Land cover	NDWI
d inc	Gaalagy	Lithology
lex	Geology	Distance from the fault
		Mean annual precipitation (MAP)
	Precipitation	Coefficient of variation of annual rainfal
		(CVAR)
Pip		Defect Density
elin		Depth
e vulnerability index		Thickness
	Pipe Body	Pressure
		Materials
		Diameter
		Media
	Spatial relationship between pipeline and	Position
	landslide	Angle

Page 15

450	
451	
452	
453	
454	
455	
456	
457	
458	
459	
460	
461	
462	
463	

449

Table 1	2
---------	---

Weight 0.010007 0.101553 0.678851 0.154322 0.055266 Entropy 0.997322 0.97282 0.818308 0.958696 0.985208		Depth	Angle	Defect Density	Thickness	Position
Entropy 0.997322 0.97282 0.818308 0.958696 0.985208	Weight	0.010007	0.101553	0.678851	0.154322	0.055266
	Entropy	0.997322	0.97282	0.818308	0.958696	0.985208

464

© Author(s) 2018

Page 16

Table	3
	•

Landslide hazard	Number of slopes	Percentage	Area (km ²)	Percentage
Low (I)	33	10.48%	32.63	8.76%
Medium (II)	62	19.68%	65.53	17.60%
High (III)	112	35.56%	123.55	33.18%
Extremely high (IV)	108	34.29%	150.65	40.46%
Total	315	100%	372.36	100%

466

Page 17

Table 4

Pipeline vulnerability	Number of pipelines	Percentage	Area (km ²)	Percentage
Low (I)	120	66.66%	50.417	62.06%
Medium (II)	37	20.56%	20.888	25.72%
High (III)	22	12.22%	9.833	12.11%
Extremely (IV)	1	0.56%	0.087	0.11%
Total	180	100%	81.225	100%

470

469

Page 18

472			Table 5			
•	Pipeline risk	Number of pipelines	Percentage	Area (km ²)	Percentage	
•	Low (I)	37	20.56%	14.469	17.81%	
	Medium (II)	106	58.89%	50.757	62.49%	
	High (III)	33	18.33%	13.461	16.57%	
	Extremely (IV)	4	2.22%	2.538	3.13%	
	Total	180	100%	81.225	100%	
473						

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-360 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 6 December 2018

© Author(s) 2018. CC BY 4.0 License.

Page 19

		Table 6		
Pipeline risk	landslides hazard	Vulnerability	Risk	Control measures
Low (I)	The landslide won't happen under ordinary conditions, but it will occur when strong earthquake, long continuous rain or extremely heavy rain happened.	The pipes in low risk areas have no any defects and buried very deep. Meanwhile, they are far away from the area affected by landslide	Landslides have no obvious damage to the pipes, and few threats to pipes' safety.	Regular Inspection
Medium (II)	Small landslide mainly occur, and no sign of deformation. But through analyzing geological structure, topography and landform, there is a tendency of landslide.	The pipes in risk areas have almost no faults and buried deep. However, under bad condition, the landslide may also affect the pipes' safety.	The landslide may make the pipes exposed or deformation.	simple monitoring
High (III)	Landslides are most in medium-model and little-model, and they are in deformation, or have obvious deformation recently, such as obvious cracks, subsidence or tympanites on the landslide and even shear.	The pipeline has defects, and buried shallow. Once landslides occurred in the pipeline area, pipes' safety will be threatened	The safety of pipeline will be threatened and may suffer from pipe suspension, floating, and damage etc. Therefore it will contribute to a small amount of medium leakage. Fortunately, the pipe can be welded or repaired.	Main monitoring
Extremely high (IV)	Large or huge landslide is common in the area with extremely high risk, which is changing or has experienced obvious deformation recently with visible cracks.	The pipelines are subject to dangers at any time as the pipelines within the area prone to landslide have been spotted with many defects or much damage.	There are great threats, for example pipeline rupture or break and may lead to considerable leakage of media or serious deformation even transportation failure.	Prevention and control measures shall be taken in a short time

476

Page 20

Page 21

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-360 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 6 December 2018

Page 22

Page 23

491 492

Page 24

495

Page 25

498 499

Page 26

Factor	Indicators	Interval	Hazard degree monotonicity	Hazard level
		[1000, Highest]	Decreasing	Low hazard(I)
		[Lowest, 600)	Increasing	Medium hazard(II)
	Elevation	[800, 1000)	Decreasing	High hazard(III)
		$[600, 700) \cup [700, 800)$	Increasing,	Extremely high
		[60, 90)	Decreasing	Low hazard(I)
		[0, 15)	Increasing	Medium hazard(II)
	Slope	[30, 60)	Decreasing	High hazard(III)
		$[15, 20) \cup [20, 30)$	Increasing,	Extremely high
		$[13, 20] \cup [20, 30]$	Decreasing	hazard(IV)
		$[0, 45) \cup [270, 360)$	Increasing, Decreasing	Low hazard(I)
	Aspect	$[225, 270) \cup [45, 90)$	Decreasing,	Medium
	1		Increasing	hazard(II)
Landform		[90, 135) \cup [180, 225)	Decreasing	High hazard(III)
		$[135, 157.5) \cup [157.5, 180)$	Increasing,	Extremely high
		Lowest 100)	Increasing	Low hazard(I)
	Height difference		Decreasing,	Medium
		$[900, Highest] \cup [100, 200)$	Increasing	hazard(II)
		$[600, 900) \cup [200, 300)$	Decreasing, Increasing	High hazard(III)
		$[300, 450) \cup [450, 600)$	Increasing,	Extremely high
		[Lowest = 0.025)	Decreasing	hazard(IV)
	topographic profile curvature	[Lowest , -0.023]	mereasing	Medium
		[0.025, Highest]	Decreasing	hazard(II)
		[-0.025 , -0.01) \cup [0.01 , 0.025)	Increasing, Decreasing	High hazard(III)
		$[-0.01 0) \cup [0 0.01)$	Increasing,	Extremely high
			Decreasing	hazard(IV)
	NDVI	[-1,0)	Increasing	Low hazard(1) Medium
		$[0,0.6) \cup [0.9,1]$	Decreasing	hazard(II)
Land cover		$[0.6, 0.7) \cup [0.8, 0.9)$	Increasing, Decreasing	High hazard(III)
		$[0.7, 0.75) \cup [0.75, 0.8)$	Increasing, Decreasing	Extremely high hazard(IV)
Precipitation	Mean annual precipitation	[1100, Highest)	Decreasing	Low hazard(I)
		[Lowest, 960)	Increasing	Medium hazard(II)
		[990, 1100)	Decreasing	High hazard(III)
		$[960, 975) \cup [975, 990)$	Increasing,	Extremely high
		[20. Highest]	Decreasing Decreasing	hazard(IV) Low hazard(I)
		[15, 20]	Decreasing	Medium
Geology	Distance from the fault	[13, 20]	Decreasing	hazard(II)
		[5, 15)	Decreasing	High hazard(III)
		[0,5)	Decreasing	hazard(IV)

500 Appendix 1 Classification of landslide hazard grade corresponding to different intervals

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-360 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 6 December 2018

© Author(s) 2018. CC BY 4.0 License.

(\mathbf{c})	۲
\sim	BY

-	-	Input									(
Sample type	a	Aspect	Slope	Elevation	IVUN	MAP	Height Difference	TPC	Distance	Lithology	Output
	1	0.2	89.9	438	-1	908.1	33	-0.582	25	1	0
	50	35.2	82.8	453	0	912.2	79	-0.456	23.47	1	0.06
	100	297.1	75.7	469	0.88	916.3	115	-0.33	21.9	1	0.12
	150	329.3	67.6	485	0.95	920.4	167	-0.168	20.34	1	0.19
	200	359.5	60	499	1	924.9	200	0.628	18.77	1	0.25
	250	68.4	3.8	1293	0.73	930.4	1097	0.486	17.21	2	0.31
I raining sample	300	89.3	8.2	1206	0.65	938	1039	0.326	15.64	2	0.37
	350	246	12	1102	0.56	943.6	977	0.183	14.08	2	0.44
	400	269.3	15	1002	0.5	949.8	902	-0.142	12.52	2	0.5
	450	113.4	52.9	952	0.46	90.09	848	-0.018	10.95	3	0.56
	500	134.8	46.3	905	0.4	972.6	757	-0.012	9.39	3	0.62
	1	27.2	72.3	458	0.8	911.6	59	-0.544	25	1	0
	7	28.5	71.6	468	0.81	914.3	74	-0.453	23.69	1	0.06
	ю	31.5	69.5	488	0.85	915.8	86	-0.381	22.37	1	0.11
	4	37.8	66.2	490	0.86	917.1	100	-0.228	21.06	1	0.16
	2	38.6	62.1	497	0.86	919.1	152	-0.03	19.74	1	0.22
	9	56.1	4.4	1141	0.7	934.2	939	0.439	18.43	2	0.27
	٢	57.3	6.6	1240	0.68	939.6	941	0.429	17.11	2	0.32
lest sample	×	65.3	9.8	1257	0.66	945.1	1124	0.413	15.79	7	0.37
	6	68.2	11	1290	0.56	948.8	1135	0.318	14.48	7	0.43
	10	74.7	11.9	1382	0.53	949.9	1146	0.148	13.16	7	0.48
	11	92.4	30.4	848	0.47	963.4	613	-0.019	11.85	ю	0.53
	12	92.7	31.8	853	0.45	970.5	683	-0.016	10.53	б	0.58
	13	101.9	44.7	006	0.45	980.5	737	-0.015	9.22	ю	0.64

Page 27

Appendix 2 Standard training sample matrix and standard test sample matrix

14	110.1	50.9	917	0.35	987	817	-0.015	7.9	Э	0.69
15	115.6	57.5	933	0.32	994.2	835	-0.015	6.58	ю	0.74
16	140.6	15.6	502	0.14	1001.5	245	0.019	5.27	4	0.79
17	155.4	20	626	0.14	1002.3	256	0.008	3.95	4	0.85
18	157.1	24.8	069	0.08	1010.6	293	0.007	2.64	4	0.9
19	177.6	27.3	765	0.06	1012.7	392	0.004	1.32	4	0.95
20	178.3	29.6	795	0.04	1022.7	446	0.001	0	4	1

Page 29

505

Appendix 3 Test error of LM-BP neural network

Number	Expected value	network output	error
1	0	0.0006	0.0006
2	0.06	0.0548	-0.0052
3	0.11	0.1113	0.0013
4	0.16	0.1699	0.0099
5	0.22	0.2302	0.0102
6	0.27	0.2614	-0.0086
7	0.32	0.315	-0.005
8	0.37	0.3697	-0.0003
9	0.43	0.4266	-0.0034
10	0.48	0.4899	0.0099
11	0.53	0.5153	-0.0147
12	0.58	0.5765	-0.0035
13	0.64	0.6405	0.0005
14	0.69	0.701	0.011
15	0.74	0.7523	0.0123
16	0.79	0.8094	0.0194
17	0.85	0.8616	0.0116
18	0.9	0.9155	0.0155
19	0.95	0.9675	0.0175
20	1	1.0173	0.0173

	Appendix 4 Co	ordinates	of the cente	er line and	lancilla	ry facilities	of the pipeline		
Point number	Previous point	Material	Diameter	Pressure	Depth	Coordinate		•	devation
			(uuu)		(n)	Х	Ү Н		
Marker peg		1	1	1	1	576.265	4357.849 50	3.877	
GD1.421	GD1.420	Steel	168	high	2.2	572.111	4352.109 50)4.235	502.035
GD1.422	GD1.421	Steel	168	high	1.9	571.837	4336.010 50	3.866	501.966
GD1.423	GD1.422	Steel	168	high	2.1	571.538	4319.679 50	3.694	501.594
GD1.424	GD1.423	Steel	168	high	2.1	571.093	4308.825 50	3.510	501.410
GD1.425	GD1.424	Steel	168	high	2.0	570.718	4288.141 50	3.733	501.733
Detective pole	K566	1	1	1	1	575.536	4284.069 50	3.494 .	
GD1.426	GD1.425	Steel	168	high	2.3	570.603	4275.147 50	3.998	501.698
Mileage peg K	566+200	1	1	1	1	574.641	4258.41 50	3.224 .	
GD1.427	GD1.426	Steel	168	high	2.0	570.222	4258.593 50	3.710	501.710
GD1.428	GD1.427	Steel	168	high	1.6	570.090	4247.642 50	3.283	501.683
GD1.429	GD1.428	Steel	168	high	2.3	569.458	4216.618 50)2.468	500.168
GD1.430	GD1.429	Steel	168	high	2.9	569.043	4208.558 50)4.055	501.155

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-360 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 6 December 2018

© Author(s) 2018. CC BY 4.0 License.

\odot	•
\sim	BY

11.1	:	11.1	
8(32	
56(:	943	
Spiral weld	from 16.2mmto 11.1mm	Spiral weld	
Pipe segment	Wall thickness variation	Pipe segment	
51.540	51.540	57.148	
140	140	150	
28	29	30	

527	Appendix 6 Core Code of Pipeline Defect Point Coordinate Calculating Program
528	using System;
529	using System.Collections.Generic;
530	using System.ComponentModel;
531	using System.Data;
532	using System.Drawing;
533	using System.Linq;
534	using System.Text;
535	using System.Threading.Tasks;
536	using System.Windows.Forms;
537	using System.IO;
538	private void button10_Click(object sender, EventArgs e)
539	{
540	double $x1 = 0$, $y1 = 0$, $z1 = 0$, $x2 = 0$, $y2 = 0$, $z2 = 0$, $d1 = 0$, $d2 = 0$, $h1 = 0$, $h2 = 0$;
541	double l = Convert.ToDouble(textBox9.Text);
542	double $f = 0,nl=Convert.ToDouble(textBox7.Text);$
543	<pre>string[] SplitTxt = textBox2.Text.Split(',');</pre>
544	for (long $i = 0$; $i < SplitTxt.Length-9$; $i+=5$)
545	{
546	d1 = Convert.ToDouble(SplitTxt[i + 1]);
547	x1 = Convert.ToDouble(SplitTxt[i + 2]);
548	y1 = Convert.ToDouble(SplitTxt[i + 3]);
549	z1 = Convert.ToDouble(SplitTxt[i + 4]);
550	d2 = Convert.ToDouble(SplitTxt[i + 6]);
551	x2 = Convert.ToDouble(SplitTxt[i + 7]);
552	y2 = Convert.ToDouble(SplitTxt[i + 8]);
553	z2 = Convert.ToDouble(SplitTxt[i + 9]);
554	h1 = z1-d1;
555	h2 = z2-d2;
556	1 += Math.Sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(h1-h2)*(h1-h2));
557	}
558	<pre>textBox8.Text =1.ToString();</pre>
559	f = (nl-l)/nl;
560	$\mathbf{f}\mathbf{f}=\mathbf{f};$
561	<pre>textBox5.Text = Convert.ToDouble(f).ToString("P");</pre>
562	}
563	private void button9_Click(object sender, EventArgs e)
564	{
565	double $f1 = ff$;
566	double $11 = 0;$
567	<pre>string zb = ""; string[] SplitTxt = textBox3.Text.Split(',');</pre>
568	for (long $i = 0$; $i < SplitTxt.Length - 1$; $i += 2$)
569	{
570	<pre>11 = Convert.ToDouble(SplitTxt[i + 1]);</pre>

571		11 += (-ff) * 11;
572		double $x1 = 0, y1 = 0, z1 = 0, x2 = 0, y2 = 0, z2 = 0, d1 = 0, d2 = 0, h1 = 0, h2 = 0, 10=0,12=0;$
573		double 1 = Convert.ToDouble(textBox9.Text);
574		double $x = 0, y = 0, h = 0;$
575		<pre>string[] SplitTxt1 = textBox2.Text.Split(',');</pre>
576		for (long $j = 0$; $j < SplitTxt1$.Length - 9; $j += 5$)
577		{
578		d1 = Convert.ToDouble(SplitTxt1[j + 1]);
579		x1 = Convert.ToDouble(SplitTxt1[j + 2]);
580		y1 = Convert.ToDouble(SplitTxt1[j + 3]);
581		z1 = Convert.ToDouble(SplitTxt1[j + 4]);
582		d2 = Convert.ToDouble(SplitTxt1[j + 6]);
583		x2 = Convert.ToDouble(SplitTxt1[j + 7]);
584		y2 = Convert.ToDouble(SplitTxt1[j + 8]);
585		z2 = Convert.ToDouble(SplitTxt1[j + 9]);
586		h1 = z1 - d1; h2 = z2 - d2;
587		10=Math.Sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) + (h1 - h2) * (h1 - h2));
588		1 = 1 + 10;
589		if (1 - 11 < 0)
590		{
591		;
592		}
593		else if (1 - 11 >0)
594		{
595		12 = 10 - (1 - 11);
596		x = x1 + (x2 - x1) * 12 / 10;
597		y = y1 + (y2 - y1) * 12 / 10;
598		h = h1 + (h2 - h1) * 12 / 10;
599		string xx, yy, hh, v;
600		v = SplitTxt[i];
601		<pre>xx = Convert.ToDouble(x).ToString();</pre>
602		<pre>yy = Convert.ToDouble(y).ToString();</pre>
603		hh = Convert.ToDouble(h).ToString();
604		zb +=v + "," + xx + "," + yy + "," + hh + ", n";
605		break;
606		}
607		}
608	}	
609		textBox6.Text = zb ;
610	}	

611

Fid Start Terminus Hazard Hazard (evel Vulnerability (evel Vulnerability (evel Vulnerability (evel 1 K558 K559+446 0.874 IV 0.168 1 2 K559+446 K563+718 0.874 IV 0.178 1 3 K563+718 K564+883 0.932 IV 0.149 1 5 K566+90 K567+117 0.943 IV 0.280 II 6 K567+117 K567+224 0.766 IV 0.095 I 7 K567+224 K567+782 0.729 III 0.117 I 8 K567+674 K567+782 0.729 III 0.066 I 11 K567+846 K567+904 0.729 III 0.066 I 12 K568+197 K568+197 0.722 III 0.144 I 14 K569+443 K569+419 0.739 III 0.141 I 16 K569+443 <th>ability Risk Risk</th>	ability Risk Risk
I K558 K559+446 0.874 IV 0.168 I 2 K559+446 K563+718 0.874 IV 0.178 I 3 K563+718 K564+883 0.932 IV 0.143 I 4 K564+883 K566+90 0.943 IV 0.149 I 5 K566+90 K567+117 0.943 IV 0.280 II 6 K567+117 K567+224 0.766 IV 0.095 I 7 K567+224 K567+384 0.729 III 0.117 I 8 K567+384 K567+782 0.729 III 0.079 I 9 K567+784 K567+82 0.729 III 0.097 I 10 K567+782 K567+904 0.729 III 0.097 I 12 K568+40 K568+197 0.722 III 0.154 I 13 K568+419 K569+419 0.739 III	level
2 K559+446 K563+718 0.874 IV 0.178 I 3 K563+718 K564+883 0.932 IV 0.143 I 4 K564+883 K566+90 0.943 IV 0.149 I 5 K566+90 K567+117 0.943 IV 0.280 II 6 K567+117 K567+224 0.766 IV 0.095 I 7 K567+224 K567+384 0.729 III 0.117 I 8 K567+544 K567+846 0.729 III 0.079 I 9 K567+674 K567+846 0.729 III 0.066 I 11 K567+826 K567+904 0.729 III 0.066 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+419 K569+419 0.739 III 0.161 I 15 K569+419 K569+443 0.739 III 0.107 I 17 K569+443 K569+578 0.739 <td>0.147 II</td>	0.147 II
3 K563+718 K564+883 0.932 IV 0.143 I 4 K564+883 K566+90 0.943 IV 0.149 I 5 K566+90 K567+117 0.943 IV 0.280 II 6 K567+117 K567+224 0.766 IV 0.095 I 7 K567+224 K567+674 0.729 III 0.117 I 8 K567+384 K567+674 0.729 III 0.079 I 9 K567+674 K567+782 0.729 III 0.066 I 11 K567+782 K567+904 0.729 III 0.066 I 11 K567+7846 K567+904 0.729 III 0.166 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.186 I 15 K569+419 K569+473 0.739 III 0.107 I 17 K569+467 K569+578 0.739	0.156 II
4 K564+883 K566+90 0.943 IV 0.149 I 5 K566+90 K567+117 0.943 IV 0.280 II 6 K567+117 K567+224 0.766 IV 0.095 I 7 K567+224 K567+384 0.729 III 0.117 I 8 K567+384 K567+674 0.729 III 0.079 I 9 K567+674 K567+782 0.729 III 0.066 I 11 K567+846 K567+904 0.729 III 0.097 I 12 K568+904 K568+197 0.722 III 0.144 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.166 I 14 K569+443 K569+467 0.739 III 0.141 I 16 K569+443 K569+578 0.739 III 0.107 I 17 K569+467 K569+578 K573	0.133 II
5 K566+90 K567+117 0.943 IV 0.280 II 6 K567+117 K567+224 0.766 IV 0.095 I 7 K567+224 K567+384 0.729 III 0.117 I 8 K567+384 K567+674 0.729 III 0.079 I 9 K567+674 K567+782 0.729 III 0.066 I 11 K567+846 K567+904 0.729 III 0.097 I 12 K568+904 K568+197 0.722 III 0.154 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.167 I 15 K569+419 K569+578 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.107 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+123 K571+920 K	0.141 II
6 K567+117 K567+224 0.766 IV 0.095 I 7 K567+224 K567+384 0.729 III 0.117 I 8 K567+384 K567+674 0.729 III 0.079 I 9 K567+674 K567+782 0.729 III 0.0411 I 10 K567+782 K567+846 0.729 III 0.066 I 11 K567+846 K567+904 0.729 III 0.097 I 12 K568+904 K568+197 0.722 III 0.154 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.107 I 15 K569+419 K569+467 0.739 III 0.107 I 16 K569+578 K569+578 0.739 III 0.107 I 17 K569+467 K569+579 0.739 III 0.107 I 18 K569+578 K571+123 <t< td=""><td>0.264 III</td></t<>	0.264 III
7 K567+224 K567+384 0.729 III 0.117 I 8 K567+384 K567+674 0.729 III 0.079 I 9 K567+674 K567+782 0.729 III 0.141 I 10 K567+782 K567+846 0.729 III 0.066 I 11 K567+782 K567+904 0.729 III 0.097 I 12 K568+904 K568+197 0.722 III 0.144 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.186 I 15 K569+419 K569+443 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.107 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K571+58 <t< td=""><td>0.073 I</td></t<>	0.073 I
8 K567+384 K567+674 0.729 III 0.079 I 9 K567+674 K567+782 0.729 III 0.141 I 10 K567+782 K567+846 0.729 III 0.066 I 11 K567+846 K567+904 0.729 III 0.097 I 12 K568+904 K568+197 0.722 III 0.154 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.186 I 15 K569+419 K569+443 0.739 III 0.107 I 16 K569+467 K569+578 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.107 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.739 </td <td>0.085 II</td>	0.085 II
9 K567+674 K567+782 0.729 III 0.141 I 10 K567+782 K567+846 0.729 III 0.066 I 11 K567+846 K567+904 0.729 III 0.097 I 12 K568+904 K568+197 0.722 III 0.154 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.186 I 15 K569+419 K569+443 0.739 III 0.1017 I 16 K569+467 K569+578 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.107 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K572+729 0.753	0.058 I
10 K567+782 K567+846 0.729 III 0.066 I 11 K567+846 K567+904 0.729 III 0.097 I 12 K568+904 K568+197 0.722 III 0.154 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.186 I 15 K569+419 K569+443 0.739 III 0.141 I 16 K569+443 K569+578 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.107 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K572+729 0.753 IV 0.090 I 21 K572+982 K572+729 0.753<	0.103 II
11 K567+846 K567+904 0.729 III 0.097 I 12 K568+904 K568+197 0.722 III 0.154 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.186 I 15 K569+419 K569+443 0.739 III 0.141 I 16 K569+443 K569+578 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.107 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K571+982 0.799 IV 0.109 I 21 K572+982 K572+729 0.753 IV 0.094 I 23 K574+548 K574+249 0.805 IV 0.094 I 23 K575+525 K575+538 <	0.048 I
12 K568+904 K568+197 0.722 III 0.154 I 13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.186 I 15 K569+419 K569+443 0.739 III 0.141 I 16 K569+443 K569+467 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.107 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K571+982 0.799 IV 0.109 I 21 K572+982 K572+729 0.753 IV 0.090 I 22 K573+729 K573+548 0.802 IV 0.094 I 23 K574+548 K574+249 0.805 IV 0.150 I 25 K575+538 K575+538 <t< td=""><td>0.071 I</td></t<>	0.071 I
13 K568+197 K568+430 0.763 IV 0.144 I 14 K569+430 K569+419 0.739 III 0.186 I 15 K569+419 K569+443 0.739 III 0.141 I 16 K569+443 K569+467 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.107 I 18 K569+578 K569+20 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K571+982 0.799 IV 0.109 I 21 K572+982 K572+729 0.753 IV 0.090 I 23 K574+548 K574+249 0.805 IV 0.084 I 24 K574+249 K574+525 0.805 IV 0.115 I 26 K575+538 K575+538 0.805 IV 0.108 I 28 K577+737 K577+120	0.111 II
14 K569+430 K569+419 0.739 III 0.186 I 15 K569+419 K569+443 0.739 III 0.141 I 16 K569+443 K569+467 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.121 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K571+982 0.799 IV 0.109 I 21 K572+982 K572+729 0.753 IV 0.090 I 22 K573+729 K573+548 0.802 IV 0.094 I 23 K574+548 K574+249 0.805 IV 0.084 I 24 K574+249 K576+737 0.816 IV 0.115 I 26 K575+538 K575+538 0.805 IV 0.108 I 27 K576+600 K576+737 <td< td=""><td>0.110 II</td></td<>	0.110 II
15 K569+419 K569+443 0.739 III 0.141 I 16 K569+443 K569+467 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.121 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K571+982 0.799 IV 0.109 I 21 K572+982 K572+729 0.753 IV 0.090 I 22 K573+729 K573+548 0.802 IV 0.094 I 23 K574+548 K574+249 0.805 IV 0.084 I 24 K574+249 K574+525 0.805 IV 0.115 I 26 K575+538 K575+538 0.805 IV 0.108 I 27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+737 K577+120	0.137 II
16 K569+443 K569+467 0.739 III 0.107 I 17 K569+467 K569+578 0.739 III 0.121 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K571+982 0.799 IV 0.109 I 21 K572+982 K572+729 0.753 IV 0.090 I 22 K573+729 K573+548 0.802 IV 0.094 I 23 K574+548 K574+249 0.805 IV 0.084 I 24 K574+249 K574+525 0.805 IV 0.115 I 25 K575+538 K575+538 0.805 IV 0.115 I 26 K577+737 K576+600 0.805 IV 0.108 I 28 K577+737 K577+120 0.889 IV 0.089 I 29 K577+120 K577+187 0	0.104 II
17 K569+467 K569+578 0.739 III 0.121 I 18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K571+982 0.799 IV 0.109 I 21 K572+982 K572+729 0.753 IV 0.090 I 22 K573+729 K573+548 0.802 IV 0.094 I 23 K574+548 K574+249 0.805 IV 0.084 I 24 K574+249 K574+525 0.805 IV 0.115 I 25 K575+538 K575+600 0.805 IV 0.115 I 26 K575+538 K576+737 0.816 IV 0.108 I 28 K577+737 K577+120 0.889 IV 0.089 I 29 K577+120 K577+187 0.889 IV 0.169 I 30 K577+146 K578+571 0.	0.079 II
18 K569+578 K569+920 0.739 III 0.107 I 19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K571+982 0.799 IV 0.109 I 21 K572+982 K572+729 0.753 IV 0.090 I 23 K574+548 K574+249 0.802 IV 0.084 I 24 K574+548 K574+525 0.805 IV 0.150 I 25 K575+525 K575+538 0.805 IV 0.115 I 26 K575+538 K575+600 0.805 IV 0.157 I 27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+737 K577+120 0.889 IV 0.094 I 30 K577+146 K577+187 0.889 IV 0.169 I 31 K578+187 K578+571 0.889	0.089 II
19 K571+920 K571+123 0.736 III 0.127 I 20 K571+123 K571+982 0.799 IV 0.109 I 21 K572+982 K572+729 0.753 IV 0.090 I 22 K573+729 K573+548 0.802 IV 0.094 I 23 K574+548 K574+249 0.805 IV 0.084 I 24 K574+249 K574+525 0.805 IV 0.115 I 25 K575+525 K575+538 0.805 IV 0.115 I 26 K575+538 K575+600 0.805 IV 0.157 I 27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+737 K577+120 0.889 IV 0.089 I 29 K577+120 K577+187 0.889 IV 0.094 I 30 K577+146 K578+571 0.889 IV 0.169 I 31 K578+187 K578+571 0.88	0.079 II
20 K571+123 K571+982 0.799 IV 0.109 I 21 K572+982 K572+729 0.753 IV 0.090 I 22 K573+729 K573+548 0.802 IV 0.094 I 23 K574+548 K574+249 0.805 IV 0.084 I 24 K574+249 K574+525 0.805 IV 0.115 I 26 K575+525 K575+538 0.805 IV 0.157 I 27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+737 K577+120 0.889 IV 0.089 I 29 K577+120 K577+146 0.889 IV 0.094 I 30 K577+146 K578+571 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.093 II
21 K572+982 K572+729 0.753 IV 0.090 I 22 K573+729 K573+548 0.802 IV 0.094 I 23 K574+548 K574+249 0.805 IV 0.084 I 24 K574+249 K574+525 0.805 IV 0.150 I 25 K575+525 K575+538 0.805 IV 0.115 I 26 K575+538 K575+600 0.805 IV 0.157 I 27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+737 K577+120 0.889 IV 0.094 I 30 K577+146 K577+187 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.087 II
22 K573+729 K573+548 0.802 IV 0.094 I 23 K574+548 K574+249 0.805 IV 0.084 I 24 K574+249 K574+525 0.805 IV 0.150 I 25 K575+525 K575+538 0.805 IV 0.115 I 26 K575+538 K575+600 0.805 IV 0.157 I 27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+137 K577+120 0.889 IV 0.094 I 30 K577+146 K577+187 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.068 I
23 K574+548 K574+249 0.805 IV 0.084 I 24 K574+249 K574+525 0.805 IV 0.150 I 25 K575+525 K575+538 0.805 IV 0.115 I 26 K575+538 K575+600 0.805 IV 0.157 I 27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+137 K577+120 0.889 IV 0.089 I 29 K577+120 K577+146 0.889 IV 0.094 I 30 K577+146 K578+571 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.075 I
24 K574+249 K574+525 0.805 IV 0.150 I 25 K575+525 K575+538 0.805 IV 0.115 I 26 K575+538 K575+600 0.805 IV 0.157 I 27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+737 K577+120 0.889 IV 0.089 I 29 K577+120 K577+146 0.889 IV 0.094 I 30 K577+146 K578+571 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.068 I
25 K575+525 K575+538 0.805 IV 0.115 I 26 K575+538 K575+600 0.805 IV 0.157 I 27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+737 K577+120 0.889 IV 0.089 I 29 K577+120 K577+146 0.889 IV 0.094 I 30 K577+146 K578+571 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.121 II
26 K575+538 K575+600 0.805 IV 0.157 I 27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+737 K577+120 0.889 IV 0.089 I 29 K577+120 K577+146 0.889 IV 0.094 I 30 K577+146 K577+187 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.093 II
27 K576+600 K576+737 0.816 IV 0.108 I 28 K577+737 K577+120 0.889 IV 0.089 I 29 K577+120 K577+146 0.889 IV 0.094 I 30 K577+146 K577+187 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.126 II
28 K577+737 K577+120 0.889 IV 0.089 I 29 K577+120 K577+146 0.889 IV 0.094 I 30 K577+146 K577+187 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.088 II
29 K577+120 K577+146 0.889 IV 0.094 I 30 K577+146 K577+187 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.079 I
30 K577+146 K577+187 0.889 IV 0.169 I 31 K578+187 K578+571 0.889 IV 0.118 I	0.084 I
31 K578+187 K578+571 0.889 IV 0.118 I	0.150 II
	0.105 II
32 K578+571 K578+608 0.889 IV 0.095 I	0.084 I
33 K579+608 K579+624 0.853 IV 0.133 I	0.113 II
34 K580+624 K580+582 0.871 IV 0.156 I	0.136 II
35 K581+582 K581+43 0.871 IV 0.097 I	0.084 I
36 K581+43 K581+273 0.871 IV 0.143 I	0.125 II
37 K581+273 K581+536 0.880 IV 0.125 I	0.110 II
38 K581+536 K581+659 0.872 IV 0.154 I	0.134 II
39 K582+659 K582+263 0.830 IV 0.152 I	0.126 II
40 K582+263 K582+437 0.830 IV 0.116 I	0.096 II
41 K583+437 K583+512 0.830 IV 0.152 I	0.126 II
42 K583+512 K583+693 0.798 IV 0.105 I	0.084 II
43 K583+693 K583+720 0.740 III 0.113 I	0.084 II
44 K585+720 K585+55 0.740 III 0.178 I	0.132 II
45 K585+55 K585+101 0.668 III 0.196 I	0.131 II
46 K585+101 K585+370 0.668 III 0.178 I	0.119 II
47 K585+370 K585+634 0.696 III 0.190 I	0.132 II
48 K585+634 K585+734 0.668 III 0.116 I	0.077 II

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-360 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 6 December 2018

© Author(s) 2018. CC BY 4.0 License.

49	K585+734	K585+908	0.627	III	0.198	Ι	0.124 II
50	K585+908	K585+949	0.627	III	0.168	Ι	0.105 II
51	K586+949	K586+782	0.627	III	0.173	Ι	0.108 II
52	K586+782	K586+805	0.627	III	0.117	Ι	0.073 II
53	K587+805	K587+364	0.627	III	0.171	Ι	0.107 II
54	K587+364	K587+498	0.618	III	0.078	Ι	0.048 I
55	K587+498	K587+794	0.618	III	0.107	Ι	0.066 I
56	K589+794	K589+251	0.618	III	0.102	Ι	0.063 I
57	K590+251	K590+757	0.618	III	0.172	Ι	0.106 II
58	K590+757	K590+780	0.556	III	0.153	Ι	0.085 II
59	K590+780	K590+812	0.556	III	0.123	Ι	0.068 II
60	K591+812	K591+500	0.555	III	0.135	Ι	0.075 II
61	K591+500	K591+946	0.555	III	0.087	Ι	0.048 I
62	K592+946	K592+259	0.555	III	0.107	Ι	0.059 I
63	K593+259	K593+631	0.517	III	0.152	Ι	0.079 II
64	K593+631	K593+912	0.374	Π	0.153	Ι	0.057 II
65	K594+912	K594+993	0.374	II	0.150	Ι	0.056 II
66	K595+993	K595+203	0.374	II	0.076	Ι	0.028 I
67	K595+203	K595+261	0.359	II	0.114	Ι	0.041 I
68	K595+261	K595+383	0.359	Π	0.099	Ι	0.036 I
69	K596+383	K596+383	0.412	Π	0.278	II	0.115 II
70	K596+383	K596+429	0.412	II	0.107	Ι	0.044 I
71	K597+429	K597+62	0.359	П	0.121	I	0.043 I
72	K597+62	K597+200	0.412	II	0.158	Ι	0.065 II
73	K597+200	K597+345	0.412	П	0.133	I	0.055 I
74	K597+345	K597+680	0.412	П	0.273	П	0.112 II
75	K599+680	K599+376	0.321	П	0.461	II -	0.148 II
76	K599+376	K599+693	0.211	I	0.105	I	0.022 1
77	K600+693	K600+188	0.211	l	0.179	l	0.038 1
78	K600+188	K600+353	0.106	1	0.172	l	0.018 1
79	K601+353	K601+369	0.106	l	0.264		0.028 1
80	K602+369	K602+495	0.099	I	0.190	l u	0.019 1
81	K603+495	K603+131	0.06/	I	0.436		0.029 1
82	K603+131	K603+551	0.099	l	0.144	l	0.014 1
83	K604+551	K604+321	0.104	I	0.253	II X	0.026 1
84	K604+321	K604+976	0.099	I	0.102	l H	0.010 1
85	K605+976	K605+/35	0.178	I	0.372		0.066 II
80 87	K000+/33	K000+308	0.230	I I	0.037	111 T	0.150 II
0/	K000+308	K000+838	0.230	і п	0.127	і п	0.030 1
00 00	K007+030	K607+390	0.323	п	0.407	II I	0.151 II
07	K008+390	K008+20	0.323	п	0.103	I	0.033 II
90 01	K608+287	K608+546	0.325	п	0.143	I	0.047 1
91	K608+546	K608+583	0.340	п	0.215	I	0.023 I
9 <u>4</u> 03	K608+583	K608+835	0.406	п	0.213	П	0.037 II 0.118 II
94	K609+835	K609+565	0.442	п	0.279	П	0.123 II
95	K610+565	K610±564	0.442	п	0.403	П	0.123 H
96	K610+564	K610+945	0.442	п	0.453	П	0.200 II
97	K611+945	K611+89	0.482	П	0.117	I	0.056 I
98	K611+89	K611+691	0.501	Ш	0.138	Ī	0.069 II
99	K612+691	K612+413	0.501	III	0.175	I	0.088 II

100	K613+413	K613+269	0.501	III	0.163	Ι	0.082 II
101	K613+269	K613+442	0.502	III	0.166	Ι	0.083 II
102	K614+442	K614+83	0.502	III	0.354	II	0.178 II
103	K614+83	K614+980	0.502	III	0.263	Π	0.132 II
104	K615+980	K615+218	0.601	III	0.153	Ι	0.092 II
105	K615+218	K615+388	0.601	III	0.143	Ι	0.086 II
106	K616+388	K616+87	0.635	III	0.126	Ι	0.080 II
107	K616+87	K616+300	0.556	III	0.144	Ι	0.080 II
108	K616+300	K616+460	0.505	III	0.269	II	0.136 II
109	K617+460	K617+715	0.505	III	0.172	Ι	0.087 II
110	K617+715	K617+827	0.505	III	0.255	II	0.129 II
111	K618+827	K618+28	0.556	III	0.170	Ι	0.095 II
112	K618+28	K618+687	0.556	Ш	0.313	Π	0.174 II
113	K620+687	K620+78	0.556	III	0.188	Ι	0.105 II
114	K620+78	K620+298	0.425	Π	0.196	Ι	0.083 II
115	K621+298	K621+509	0.576	Ш	0.223	Ι	0.128 II
116	K621+509	K621+611	0.425	Π	0.107	Ι	0.045 I
117	K622+611	K622+10	0.425	Π	0.262	II	0.111 II
118	K622+10	K622+86	0.425	Π	0.122	Ι	0.052 I
119	K622+86	K622+539	0.693	III	0.178	Ι	0.123 II
120	K622+539	K622+897	0.634	III	0.549	III	0.348 III
121	K623+897	K623+36	0.634	III	0.535	III	0.339 III
122	K623+36	K623+794	0.693	III	0.145	Ι	0.100 II
123	K624+794	K624+866	0.693	III	0.310	II	0.215 II
124	K625+866	K625+242	0.796	IV	0.137	Ι	0.109 II
125	K627+242	K627+60	0.859	IV	0.452	II	0.388 III
126	K627+60	K627+162	0.859	IV	0.193	Ι	0.166 II
127	K627+162	K627+313	0.859	IV	0.166	I	0.143 II
128	K627+313	K627+700	0.783	IV	0.167	I	0.131 II
129	K628+700	K628+146	0.908	IV	0.501	III	0.455 III
130	K628+146	K628+196	0.908	IV	0.139	l	0.126 II
131	K628+196	K628+610	0.908	IV	0.631	III	0.573 IV
132	K629+610	K629+355	0.787	IV	0.369	ll	0.290 III
133	K629+355	K629+525	0.787	IV	0.729	III	0.574 IV
134	K629+525	K629+570	0.787	IV	0.252	II T	0.198 II
135	K629+570	K629+620	0.787	IV	0.465	II T	0.366 III
136	K630+620	K630+348	0.787		0.286	11 11	0.225 II
137	K630+348	K630+956	0.892		0.389	11 11	0.347/ 111
138	K031+950	K031+110	0.886		0.423		0.3/5 III
1.39	K031+110	K031+528	0.805		0.513		0.413 111
140	K033+328	K033+433	0.805		0.568	III III	0.457 III
141	K033+433	K055+502	0.955		0.623		0.365 IV
142	K033+302	K033+320	0.004		0.011	п	0.340 III
143	K035+320	K033+339	0.884		0.441	II T	0.390 III
144	K033+339	K055+500	0.004		0.194	I П	0.171 II 0.221 III
145	K033+308	K033+330	0.884		0.374	п	0.551 III 0.271 III
140	K033+330	K033+004	0.004		0.307	п	0.2/1 III 0.202 III
149	K635. 850	K635+0J0	0.805	IV	0.377	I	0.303 III 0.188 II
140	K635+030	K635+945	0.805	IV	0.234	I	0.100 II 0.112 II
147	K635+943	K635+972	0.805	IV	0.139	I	0.007 11
120	KUJJ+972	KUJJ+9/4	0.003	1 V	0.121	1	0.09/ 11

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-360 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 6 December 2018

© Author(s) 2018. CC BY 4.0 License.

Page 38

151 K635+974 K635+990 0.805 IV 0.138 I 0.111 II 152 K636+152 0.933 IV 0.598 III 0.558 III 153 K636+152 K636+159 0.933 IV 0.157 I 0.146 II 154 K636+159 K636+320 0.884 IV 0.579 III 0.512 III 155 K636+320 K636+427 0.884 IV 0.166 I 0.147 II 156 K636+427 K636+517 0.884 IV 0.1663 III 0.553 III 157 K636+517 K636+893 0.834 IV 0.663 III 0.433 III 158 K636+893 K637+57 0.834 IV 0.519 III 0.433 III 161 K637+181 K637+180 0.834 IV 0.111 I 0.093 II 162 K637+181 K637+181 0.834 IV 0.157 I 0.131 II 164<								
152 K636+990 K636+152 0.933 IV 0.598 III 0.558 III 153 K636+152 K636+159 0.933 IV 0.157 I 0.146 II 154 K636+159 K636+320 0.884 IV 0.579 III 0.512 III 155 K636+427 K636+427 0.884 IV 0.166 I 0.147 II 156 K636+427 K636+17 0.884 IV 0.124 I 0.110 II 157 K636+517 K636+806 0.834 IV 0.663 III 0.553 III 158 K637+57 K637+109 0.834 IV 0.519 III 0.433 III 160 K637+57 K637+181 0.834 IV 0.512 III 0.452 III 161 K637+181 K637+181 0.834 IV 0.127 I 0.106 II 164 K638+32 K638+199 0.767 IV 0.682 III 0.523 III	151	K635+974	K635+990	0.805	IV	0.138	Ι	0.111 II
153 K636+152 K636+159 0.933 IV 0.157 I 0.146 II 154 K636+159 K636+320 0.884 IV 0.579 III 0.512 III 155 K636+320 K636+427 0.884 IV 0.166 I 0.147 II 156 K636+427 K636+517 0.884 IV 0.124 I 0.110 II 157 K636+517 K636+506 0.834 IV 0.663 III 0.553 III 158 K636+517 K636+893 0.834 IV 0.542 III 0.432 III 160 K637+57 K637+109 0.834 IV 0.542 III 0.432 III 161 K637+181 K637+181 0.834 IV 0.111 I 0.093 II 162 K637+181 K637+132 0.834 IV 0.127 I 0.106 II 163 K638+132 K638+140 0.834 IV 0.157 I 0.131 II	152	K636+990	K636+152	0.933	IV	0.598	III	0.558 III
154 K636+159 K636+320 0.884 IV 0.579 III 0.512 III 155 K636+320 K636+427 0.884 IV 0.166 I 0.147 II 156 K636+427 K636+517 0.884 IV 0.124 I 0.110 II 157 K636+517 K636+806 0.834 IV 0.663 III 0.553 III 158 K636+806 K636+893 0.834 IV 0.794 IV 0.662 IV 159 K637+893 K637+57 0.834 IV 0.512 III 0.433 III 160 K637+57 K637+181 0.834 IV 0.512 II 0.432 III 161 K637+181 K637+181 0.834 IV 0.111 I 0.003 II 162 K637+181 K637+132 0.834 IV 0.127 I 0.106 II 163 K638+193 K638+193 0.767 IV 0.682 III 0.523 III	153	K636+152	K636+159	0.933	IV	0.157	Ι	0.146 II
155 K636+320 K636+427 0.844 IV 0.166 I 0.147 II 156 K636+427 K636+517 0.884 IV 0.124 I 0.110 II 157 K636+517 K636+806 0.834 IV 0.663 III 0.553 III 158 K636+806 K636+893 0.834 IV 0.794 IV 0.662 IV 159 K637+893 K637+57 0.834 IV 0.519 III 0.433 III 160 K637+57 K637+181 0.834 IV 0.542 III 0.452 III 161 K637+181 K637+332 0.834 IV 0.111 I 0.093 II 162 K638+131 K638+140 0.834 IV 0.127 I 0.106 II 163 K638+140 K638+193 0.767 IV 0.682 III 0.523 III 164 K638+193 K638+194 0.767 IV 0.188 I 0.144 II	154	K636+159	K636+320	0.884	IV	0.579	III	0.512 III
156 K636+427 K636+517 0.884 IV 0.124 I 0.110 II 157 K636+517 K636+806 0.834 IV 0.663 III 0.553 III 158 K636+806 K636+893 0.834 IV 0.794 IV 0.662 IV 159 K637+893 K637+57 0.834 IV 0.519 III 0.433 III 160 K637+57 K637+109 0.834 IV 0.542 III 0.452 III 161 K637+181 K637+322 0.834 IV 0.127 I 0.106 II 162 K638+332 K638+7 0.834 IV 0.127 I 0.106 II 163 K638+132 K638+140 0.834 IV 0.157 I 0.131 II 164 K638+132 K638+140 0.834 IV 0.157 I 0.144 II 165 K638+140 K638+193 0.767 IV 0.188 I 0.144 II	155	K636+320	K636+427	0.884	IV	0.166	Ι	0.147 II
157 K636+517 K636+806 0.834 IV 0.663 III 0.553 III 158 K636+806 K636+893 0.834 IV 0.794 IV 0.662 IV 159 K637+893 K637+57 0.834 IV 0.519 III 0.433 III 160 K637+57 K637+109 0.834 IV 0.542 III 0.452 III 161 K637+181 K637+322 0.834 IV 0.111 I 0.003 II 162 K637+181 K637+322 0.834 IV 0.127 I 0.106 II 163 K638+322 K638+87 0.834 IV 0.157 I 0.101 II 0.507 III 164 K638+193 0.767 IV 0.682 III 0.523 III 166 K638+193 K638+199 0.767 IV 0.188 I 0.144 II 167 K638+199 K637 IV 0.525 III 0.403 III	156	K636+427	K636+517	0.884	IV	0.124	Ι	0.110 II
158 K636+806 K636+893 0.834 IV 0.794 IV 0.662 IV 159 K637+893 K637+57 0.834 IV 0.519 III 0.433 III 160 K637+57 K637+109 0.834 IV 0.542 III 0.452 III 161 K637+109 K637+181 0.834 IV 0.111 I 0.093 I 162 K637+181 K637+332 0.834 IV 0.127 I 0.106 II 163 K638+332 K638+17 0.834 IV 0.127 I 0.106 II 164 K638+322 K638+140 0.834 IV 0.157 I 0.131 II 165 K638+140 K638+193 0.767 IV 0.682 III 0.523 III 166 K638+193 K638+26 0.767 IV 0.188 I 0.144 II 167 K638+368 K638+420 0.767 IV 0.525 III 0.403 III <t< th=""><th>157</th><th>K636+517</th><th>K636+806</th><th>0.834</th><th>IV</th><th>0.663</th><th>III</th><th>0.553 III</th></t<>	157	K636+517	K636+806	0.834	IV	0.663	III	0.553 III
159K637+893K637+570.834IV0.519III0.433III160K637+57K637+1090.834IV0.542III0.452III161K637+109K637+1810.834IV0.111I0.093II162K637+181K637+3320.834IV0.127I0.106II163K638+332K638+870.834IV0.127I0.131II164K638+332K638+1400.834IV0.157I0.131II165K638+140K638+1930.767IV0.682III0.523III166K638+193K638+1990.767IV0.188I0.144II167K638+193K638+2260.767IV0.126I0.097II168K638+226K638+3680.767IV0.532III0.463III170K638+409K638+4320.767IV0.205I0.157I171K638+432K638+4320.767IV0.173I0.133II172K638+444K638+6760.767IV0.173I0.133II173K638+676K638+8370.767IV0.479II0.367III174K639+339K639+2660.744III0.427II0.318III175K639+266K639+3390.744III0.427	158	K636+806	K636+893	0.834	IV	0.794	IV	0.662 IV
160K637+57K637+1090.834IV0.542III0.452III161K637+109K637+1810.834IV0.111I0.093II162K637+181K637+3320.834IV0.127I0.106II163K638+332K638+870.834IV0.608III0.507III164K638+332K638+1400.834IV0.157I0.131II165K638+140K638+1930.767IV0.682III0.523III166K638+193K638+1990.767IV0.126I0.097I167K638+199K638+2260.767IV0.126I0.097II168K638+226K638+3680.767IV0.532III0.408III170K638+409K638+4320.767IV0.604III0.403III171K638+432K638+4320.767IV0.205I0.157I171K638+432K638+4370.767IV0.205II0.133II172K638+444K638+6760.767IV0.173I0.133II173K638+676K638+8370.767IV0.479II0.367III174K639+337K639+2660.744III0.443II0.359III175K639+339K639+3390.744III0.463<	159	K637+893	K637+57	0.834	IV	0.519	III	0.433 III
161K637+109K637+1810.834IV0.111I0.093II162K637+181K637+3320.834IV0.127I0.106II163K638+332K638+870.834IV0.608III0.507III164K638+87K638+1400.834IV0.157I0.131II165K638+140K638+1930.767IV0.682III0.523III166K638+193K638+1990.767IV0.188I0.144II167K638+199K638+2260.767IV0.126I0.097II168K638+226K638+3680.767IV0.532III0.408III170K638+409K638+4320.767IV0.205I0.157I171K638+432K638+4440.767IV0.205I0.133II172K638+444K638+6760.767IV0.173I0.133II173K638+676K638+8370.767IV0.479II0.367III174K639+837K639+2660.744III0.443II0.324II0.204II175K639+435K639+5620.631III0.324II0.204II177K641+63K641+630.607III0.461II0.289III179K641+63K641+600.607 <th< th=""><th>160</th><th>K637+57</th><th>K637+109</th><th>0.834</th><th>IV</th><th>0.542</th><th>III</th><th>0.452 III</th></th<>	160	K637+57	K637+109	0.834	IV	0.542	III	0.452 III
162K637+181K637+3320.834IV0.127I0.106II163K638+332K638+870.834IV0.608III0.507III164K638+87K638+1400.834IV0.157I0.131II165K638+140K638+1930.767IV0.682III0.523III166K638+193K638+1990.767IV0.188I0.144II167K638+199K638+2260.767IV0.126I0.097II168K638+226K638+3680.767IV0.532III0.408III169K638+368K638+4320.767IV0.205I0.157I170K638+409K638+4320.767IV0.205I0.157II171K638+432K638+4440.767IV0.525III0.403III172K638+444K638+6760.767IV0.173I0.133I173K638+676K638+8370.767IV0.479II0.367III174K639+837K639+2660.744III0.443II0.324II0.204II175K639+435K639+5620.631III0.324II0.204II177K639+435K640+630.607III0.461II0.289III179K641+63K641+6000.607 <th>161</th> <th>K637+109</th> <th>K637+181</th> <th>0.834</th> <th>IV</th> <th>0.111</th> <th>Ι</th> <th>0.093 II</th>	161	K637+109	K637+181	0.834	IV	0.111	Ι	0.093 II
163K638+332K638+870.834IV0.608III0.507III164K638+87K638+1400.834IV0.157I0.131II165K638+140K638+1930.767IV0.682III0.523III166K638+193K638+1990.767IV0.188I0.144II167K638+199K638+2260.767IV0.126I0.097II168K638+226K638+3680.767IV0.532III0.408III169K638+368K638+4090.767IV0.604III0.463III170K638+409K638+4320.767IV0.205I0.157II171K638+432K638+4440.767IV0.525III0.403III172K638+444K638+6760.767IV0.173I0.133I173K638+676K638+3370.767IV0.479II0.367III174K639+837K639+2660.744III0.483II0.359III175K639+339K639+4350.744III0.427II0.318III176K639+339K639+4350.744III0.324II0.204I177K639+435K639+5620.631III0.324II0.289III179K641+63K641+6000.607III	162	K637+181	K637+332	0.834	IV	0.127	Ι	0.106 II
164K638+87K638+1400.834IV0.157I0.131II165K638+140K638+1930.767IV0.682III0.523III166K638+193K638+1990.767IV0.188I0.144II167K638+199K638+2260.767IV0.126I0.097II168K638+226K638+3680.767IV0.532III0.408III169K638+368K638+4090.767IV0.604III0.463III170K638+432K638+4320.767IV0.205I0.157I171K638+432K638+4440.767IV0.525III0.403III172K638+444K638+6760.767IV0.173I0.133I173K638+676K638+3370.767IV0.479II0.367III174K639+837K639+2660.744III0.427II0.318III175K639+266K639+3390.744III0.324II0.204II177K639+435K639+5620.631III0.324II0.289III178K640+562K640+630.607III0.461II0.367III180K642+600K642+2250.607III0.461II0.280III	163	K638+332	K638+87	0.834	IV	0.608	III	0.507 III
165K638+140K638+1930.767IV0.682III0.523III166K638+193K638+1990.767IV0.188I0.144II167K638+199K638+2260.767IV0.126I0.097II168K638+226K638+3680.767IV0.532III0.408III169K638+368K638+4090.767IV0.604III0.463III170K638+409K638+4320.767IV0.205I0.157II171K638+432K638+4440.767IV0.525III0.403III172K638+444K638+6760.767IV0.173I0.133II173K638+676K638+8370.767IV0.479II0.367III174K639+837K639+2660.744III0.427II0.318III175K639+339K639+4350.744III0.324II0.204II177K639+435K639+5620.631III0.324II0.204II178K640+562K640+630.607III0.461II0.367III180K642+600K642+2250.607III0.461II0.280III	164	K638+87	K638+140	0.834	IV	0.157	Ι	0.131 II
166K638+193K638+1990.767IV0.188I0.144II167K638+199K638+2260.767IV0.126I0.097II168K638+226K638+3680.767IV0.532III0.408III169K638+368K638+4090.767IV0.604III0.463III170K638+409K638+4320.767IV0.205I0.157II171K638+432K638+4440.767IV0.525III0.403III172K638+444K638+6760.767IV0.173I0.133II173K638+676K638+8370.767IV0.479II0.367III174K639+837K639+2660.744III0.427II0.318III175K639+266K639+3390.744III0.324II0.204II177K639+435K639+5620.631III0.324II0.204II178K640+562K640+630.607III0.476II0.289III180K642+600K642+2250.607III0.461II0.280III	165	K638+140	K638+193	0.767	IV	0.682	III	0.523 III
167K638+199K638+2260.767IV0.126I0.097II168K638+226K638+3680.767IV0.532III0.408III169K638+368K638+4090.767IV0.604III0.463III170K638+409K638+4320.767IV0.205I0.157II171K638+432K638+4440.767IV0.525III0.403III172K638+444K638+6760.767IV0.173I0.133II173K638+676K638+8370.767IV0.479II0.367III174K639+837K639+2660.744III0.483II0.359III175K639+266K639+3390.744III0.427II0.318III176K639+339K639+4350.744III0.324II0.204II177K639+435K640+562K640+630.607III0.476II0.289III179K641+63K641+6000.607III0.604III0.367III180K642+600K642+2250.607III0.461II0.280III	166	K638+193	K638+199	0.767	IV	0.188	Ι	0.144 II
168K638+226K638+3680.767IV0.532III0.408III169K638+368K638+4090.767IV0.604III0.463III170K638+409K638+4320.767IV0.205I0.157II171K638+432K638+4440.767IV0.525III0.403III172K638+444K638+6760.767IV0.173I0.133II173K638+676K638+8370.767IV0.479II0.367III174K639+837K639+2660.744III0.427II0.318III175K639+266K639+3390.744III0.549III0.408III176K639+435K639+5620.631III0.324II0.204II177K639+435K640+562K640+630.607III0.476II0.289III179K641+63K641+6000.607III0.461II0.280III180K642+600K642+2250.607III0.461II0.280III	167	K638+199	K638+226	0.767	IV	0.126	Ι	0.097 II
169K638+368K638+4090.767IV0.604III0.463III170K638+409K638+4320.767IV0.205I0.157II171K638+432K638+4440.767IV0.525III0.403III172K638+444K638+6760.767IV0.173I0.133II173K638+676K638+8370.767IV0.479II0.367III174K639+837K639+2660.744III0.483II0.359III175K639+266K639+3390.744III0.427II0.318III176K639+339K639+4350.744III0.549III0.408III177K639+435K639+5620.631III0.324II0.204II178K640+562K640+630.607III0.476II0.289III179K641+63K641+6000.607III0.604III0.367III180K642+600K642+2250.607III0.461II0.280III	168	K638+226	K638+368	0.767	IV	0.532	III	0.408 III
170K638+409K638+4320.767IV0.205I0.157II171K638+432K638+4440.767IV0.525III0.403III172K638+444K638+6760.767IV0.173I0.133II173K638+676K638+8370.767IV0.479II0.367III174K639+837K639+2660.744III0.483II0.359III175K639+266K639+3390.744III0.427II0.318III176K639+339K639+4350.744III0.549III0.408III177K639+435K639+5620.631III0.324II0.204II178K640+562K640+630.607III0.476II0.289III179K641+63K641+6000.607III0.604III0.367III180K642+600K642+2250.607III0.461II0.280III	169	K638+368	K638+409	0.767	IV	0.604	III	0.463 III
171 K638+432 K638+444 0.767 IV 0.525 III 0.403 III 172 K638+444 K638+676 0.767 IV 0.173 I 0.133 II 173 K638+444 K638+676 0.767 IV 0.173 I 0.133 II 173 K638+676 K638+837 0.767 IV 0.479 II 0.367 III 174 K639+837 K639+266 0.744 III 0.483 II 0.359 III 175 K639+266 K639+339 0.744 III 0.427 II 0.318 III 176 K639+339 K639+435 0.744 III 0.549 III 0.408 III 177 K639+435 K639+562 0.631 III 0.324 II 0.204 II 178 K640+562 K640+63 0.607 III 0.476 II 0.289 III 179 K641+63 K641+600 0.607 III 0.604 III 0.280 III	170	K638+409	K638+432	0.767	IV	0.205	Ι	0.157 II
172 K638+444 K638+676 0.767 IV 0.173 I 0.133 II 173 K638+676 K638+837 0.767 IV 0.479 II 0.367 III 174 K639+837 K639+266 0.744 III 0.483 II 0.359 III 175 K639+266 K639+339 0.744 III 0.427 II 0.318 III 176 K639+339 K639+435 0.744 III 0.549 III 0.408 III 177 K639+435 K639+562 0.631 III 0.324 II 0.204 II 178 K640+562 K640+63 0.607 III 0.476 II 0.289 III 179 K641+63 K641+600 0.607 III 0.604 III 0.367 III 180 K642+600 K642+225 0.607 III 0.461 II 0.280 III	171	K638+432	K638+444	0.767	IV	0.525	III	0.403 III
173K638+676K638+8370.767IV0.479II0.367III174K639+837K639+2660.744III0.483II0.359III175K639+266K639+3390.744III0.427II0.318III176K639+339K639+4350.744III0.549III0.408III177K639+435K639+5620.631III0.324II0.204II178K640+562K640+630.607III0.476II0.289III179K641+63K641+6000.607III0.604III0.367III180K642+600K642+2250.607III0.461II0.280III	172	K638+444	K638+676	0.767	IV	0.173	Ι	0.133 II
174 K639+837 K639+266 0.744 III 0.483 II 0.359 III 175 K639+266 K639+339 0.744 III 0.427 II 0.318 III 176 K639+339 K639+435 0.744 III 0.549 III 0.408 III 176 K639+435 K639+562 0.631 III 0.549 III 0.408 III 177 K639+435 K639+562 0.631 III 0.324 II 0.204 II 178 K640+562 K640+63 0.607 III 0.476 II 0.289 III 179 K641+63 K641+600 0.607 III 0.604 III 0.367 III 180 K642+600 K642+225 0.607 III 0.461 II 0.280 III	173	K638+676	K638+837	0.767	IV	0.479	П	0.367 III
175 K639+266 K639+339 0.744 III 0.427 II 0.318 III 176 K639+339 K639+435 0.744 III 0.549 III 0.408 III 177 K639+435 K639+562 0.631 III 0.324 II 0.204 II 178 K640+562 K640+63 0.607 III 0.476 II 0.289 III 179 K641+63 K641+600 0.607 III 0.604 III 0.367 III 180 K642+600 K642+225 0.607 III 0.461 II 0.280 III	174	K639+837	K639+266	0.744	III	0.483	П	0.359 III
176 K639+339 K639+435 0.744 III 0.549 III 0.408 III 177 K639+435 K639+562 0.631 III 0.324 II 0.204 II 178 K640+562 K640+63 0.607 III 0.476 II 0.289 III 179 K641+63 K641+600 0.607 III 0.604 III 0.367 III 180 K642+600 K642+225 0.607 III 0.461 II 0.280 III	175	K639+266	K639+339	0.744	III	0.427	П	0.318 III
177 K639+435 K639+562 0.631 III 0.324 II 0.204 II 178 K640+562 K640+63 0.607 III 0.476 II 0.289 III 179 K641+63 K641+600 0.607 III 0.604 III 0.367 III 180 K642+600 K642+225 0.607 III 0.461 II 0.280 III	176	K639+339	K639+435	0.744	III	0.549	III	0.408 III
178 K640+562 K640+63 0.607 III 0.476 II 0.289 III 179 K641+63 K641+600 0.607 III 0.604 III 0.367 III 180 K642+600 K642+225 0.607 III 0.461 II 0.280 III	177	K639+435	K639+562	0.631	III	0.324	П	0.204 II
179 K641+63 K641+600 0.607 III 0.604 III 0.367 III 180 K642+600 K642+225 0.607 III 0.461 II 0.280 III	178	K640+562	K640+63	0.607	III	0.476	II	0.289 III
180 K642+600 K642+225 0.607 III 0.461 II 0.280 III	179	K641+63	K641+600	0.607	III	0.604	III	0.367 III
	180	K642+600	K642+225	0.607	III	0.461	II	0.280 III